
Abstract. The novel information regarding molecular and
translational research have created a paradigm shift in the
understanding of lung cancer biology, revealing the more
precise target for anti-cancer drug discovery. Lung cancer
is a leading cause of cancer death worldwide accounting for
approximately 1 in 5 of all cancer-related deaths. The most
important causes of death in such a cancer involves the
treatment failure as well as the spreading of cancer cells to
distant sites which the cancer stem cell (CSC) within the
tumor is accepted as a key driver. CSC is a rare special
population of cancer cells exhibiting high tumorigenic
properties together with self-renewal and differentiation
capability. CSC is not only linked with high tumor-initiating
activity, but is also implicated in chemotherapeutic
resistance, metastasis, epithelial to mesenchymal transition,
and recurrence. Thereafter, novel therapeutic strategies
targeting these CSCs are considered in order to improve
long-term clinical outcome. Here, we provide sufficient data
regarding the biology of CSC in lung cancer, known CSC
markers and cellular signals, and promising compounds
targeting the stem cell signals in lung cancer that may
benefit the development of novel anti-cancer treatment.

Lung cancer has been long recognized as a life-threatening
cancer for several years. The death rate of such a cancer is very
high in comparison to that of other cancers comprising
approximately 20% of the world’s cancer related deaths (1). A
total of approximately 1.8 million new cases of lung cancer
were estimated in 2012 and this number accounted for 13% of
all new cancer cases (1). Generally, more than three-fourths
(nearly 80%) of all lung cancers are non-small cell lung
cancers (NSCLC) and the rest are small cell lung cancers
(SCLC) (2). NSCLC can be further classified to
adenocarcinoma, squamous cell carcinoma, and large cell
carcinoma (2). Worldwide, a very high number of NSCLC new
cases are diagnosed annually and the five-year survival is only
about 17.8%. Therefore, the NSCLC is considered very lethal
with both high incidence and low survival. NSCLC is
frequently found in the elderly population and smoking is
accounted as the most important risk factor in most patients
(3). Other contributory factors are exposure to environmental
toxicants including asbestos, radon, and certain metals such as
arsenic, cadmium, and chromium (4). In addition, the exposure
to organic chemicals found in coal smoke and fuel burning
have been reported to be the risk factors of lung cancer (5). 

The concept of cancer stem cells (CSC) was introduced in
1977 (6) and has now become a very interested topic in
cancer research. CSCs are a small rare fraction (in most solid
tumor <1%) of the whole cancer cell population that exhibit
high tumorigenic potential (7). CSCs were first recognized
as cancer initiating cells as they are believed to be the root
cause or seed of cancer (8, 9). The characteristics of CSCs
which play pivotal role in driving aggressiveness of cancer
include their self-renewal capacity, differentiation
(asymmetric cell division), high invasion and migration
characteristics, high tumorigenicity, and resistance to
chemotherapy (10). Based on such information, CSCs are
thought to be the main mediators of all cancer hallmarks
including high tumorigenic, high metastasis potential,
evading from immune system, resistance to chemotherapy,
and cancer relapse (8, 9). 
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The knowledge at the present day has pointed that the
currently used therapeutic approaches comprising surgery,
radio-, chemo-, and targeted therapy, in particular for lung
cancer management have failed to eradicate the CSC
population, a main cause of disease relapse. Natural product-
derived compounds that specifically target these CSCs could
unravel a more precise and efficient way to eradicate this
disease. 

In addition, the better understanding of CSC biology in
relevant to the basic mechanisms enhancing CSC properties
and aggressive behaviors of lung and other high mortality
cancers may influence the development of cancer
management strategies including anti-metastatic, control of
CSC activities, and inhibition of cancer relapse. 

Cancer Stem Cell in Lung Cancer

It is now well accepted that lung cancer is characterized by
a heterogeneity of cancer cells which exhibit different cell
phenotypes as resulted from their distinct cellular signaling. 

Among the different lineage of cancer cells residing in the
tumor, there is a specific small population of cancer cells that
has stem cell characteristics including the self-renewal capacity
and multi-lineage differentiation (11, 12). Nevertheless, the
cancer cells containing the stem cell capacities exhibit highly
aggressive phenotypes such as tumorigenic potency, migration
and invasion, evading from anoikis, and chemotherapeutic
resistance (9, 12-14). These specific subpopulation of cancer
cells were first named “cancer initiating cells”, as they were
believed to be the beginning seed of the whole cancer and have
now become the main focus of cancer cell biology as well as
anti-cancer drug discovery researches. 

CSCs were first identified in acute myeloid leukemia
(AML) by their cell surface marker CD34+Cd38–. These
cells were shown to have a high capacity to self-renew in
bone marrow and differentiate to leukemic cells when
transplanted into severe combined immunodeficient (SCID)
mice (15). After these observations were made, CSCs of
various cancer types including lung cancer were discovered
through specific cell-surface proteins by numerous research
groups (16). However, recent studies suggested that not only
CSCs but also certain populations of cancer cells within
tumors can have stem cell properties (stemness) (17).
Moreover, fully differentiated cancer cells can be
transformed to be cancer stem-like cells (CSC-like cells) by
the activity of certain cancer microenvironment substances
such as nitric oxide, hypoxia condition, and interleukin (18-
20) or by the mutation of specific gene including TP53 (21,
22). These indicated that “stemness” is a phenotype which
can be acquired via proper extracellular stimulation signals
or accumulation of specific gene mutations within the cells.
Nevertheless, both CSC and CSC-like cells show the same
characteristics as normal stem cells.

The key CSC properties compose of:
• Self-renewal capacity; an unique ability of the CSC (just

like normal stem cells) to generate the identical daughter
cells with identical stem cell characteristics.

• Ability to drive tumor heterogeneity and survival of tumor;
an ability to differentiate into different cancer cell linages,
facilitate cell growth, and survival of whole tumor.

• High tumorigenic potential; an ability of CSC to proliferate
and create non-CSC lineages and form new tumors. 
Based on the discovery of CSC in lung cancer together

with the knowledge from clinical pathology, lung cancer is
well recognized as a disease of heterogeneity. Researches
have shown that the cancer cells derived form same tumor
have a distinct ability to form tumor spheroid in vitro as well
as in vivo (23, 24). Cancer cells within the same tumor have
diverse cellular properties and signaling resulting from the
accumulation of genetic mutations and epigenetics alterations.
These differences in cellular properties and signaling are
associated with plasticity and heterogeneity of cancer stem
cells which could be identified by certain biomarkers. 

Cancer Stem Cell Markers and Regulatory Proteins 

As CSCs maintain high stem cell signaling that is similar to
that in normal tissues, certain cellular markers used for the
identification of normal stem cells are also utilized for CSC
identification. For lung cancer, the well-recognized CSC
markers are summarized in Table I and described as followed.  

Cluster of differentiation-133 (CD133, prominin-1, PROM-
1). CD133 is an 865 amino acids penta-span
transmembrane protein which has been accepted as a
principle marker of stemness in several solid tumors (25).
In human, this protein is a 120 kDa protein product of a
single-copy gene on chromosome 4 (4p15.32) (25). In
general, CD133 is an important marker used for the
isolation and identification of the stem cells from normal
tissue like human hematopoietic stem cells (26, 27). The
function of CD133 in the cells is not fully known yet but
several studies have shown that CD133 expression is linked
with stem and progenitor cell characteristics as well as the
stage of cell regeneration and differentiation (27).
Emerging evidence has also shown that CD133 is involved
in cell growth and development (28). 

In cancers, evidence has shown that the expression of
CD133 is associated with tumor aggressiveness through up-
regulation of certain proteins (29-32). 

Later on, evidence has shown that CD133 is not only a
biomarker and is functioning in normal stem cells, but also
in cancer cells. Expression of CD133 has been used for the
identification of CSC in several cancers including lung (33),
pancreatic adenocarcinoma (34), hepatocellular carcinoma
(35), prostate (36), neural (37), colorectal (38), and renal
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cancers (39). In particular, CD133 is frequently used for
indicating stemness in lung cancer following immune-
histochemical analysis of non-small cell lung cancer
(NSCLC) (29) or small cell lung cancer (SCLC) (40) patient

samples. Subsequent transplantation of CD133+cells cultured
from these tumors into severe combined immune-deficient
(SCID) mice generated tumor xenografts phenotypically
identical to the original tumor. 
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Cluster of differentiation-44 (CD44). CD44 is 742 amino
acids cell surface glycoprotein member of the tumor necrosis
factor receptor superfamily. In human, this protein is
approximately 80-95 kDa and is the product of the gene in
the short arm of chromosome 11 (11p13). This protein is
implicated in the activities of several types of cells including
hematopoietic, epithelial, endothelial, and tumor cells (41).
The function of CD44 is involved in multiple cellular
processes such as cell growth and differentiation, cellular
movement, angiogenesis and release of protease enzyme
from cell membrane (41). The activation of CD44 by
heterodimerization with growth factor receptors (EGFR,
FGFR, HGFR, VEGFR, TGF-βR) leads to the activation of
PI3K-AKT and MAPK pathways (42). CD44 has been
recognized as a marker for lung cancer stem cells (43) by
analyzing the CSC marker expression in 10 NSCLC related
to CSCs properties (43). Moreover, CD44 positive cell has
high tumorigenicity in transplantation, increased capacity to
resist to chemotherapy, and higher expression of stem cell
transcription factor Oct-4 and Nanog. However, analysis of
lung tumor samples by immunohistochemical revealed that
CD44 expression was a prognostic marker only in
adenocarcinomas but not in squamous cell carcinomas.

Aldehyde dehydrogenases 1A1 (ALDH1A1). Aldehyde
dehydrogenase (ALDH) is a member of a group of enzymes
that catalyze the oxidation of aldehydes to carboxylic acids.
ALDH1A1 is 501 amino acid protein member of the ALDH1
family and is also known as retino aldyhyde dehydrogenase1
(RALDH1). In human, this protein is an approximately 55
kDa protein, product of the ALDH1A1 gene located in
chromosome 9 (9q21.13). ALDH1A1 is a putative
hematopoietic stem cell marker associated with increased drug
resistance in many cancers (44). ALDH1A1 has been used to
develop the assay named “Aldefluor assay” which is used to
distinguish stem and progenitor cells from normal cells. This
assay also has been used in the identification of potential
CSCs in leukemia, breast, neural, head and neck, colon, liver
and lung cancers (45). More recently, lung CSCs have been
identified using this method (46). NSCLC cells with relatively
high ALDH1 activity, displayed in vitro features of CSCs,
including an increased capacity for proliferation, self-renewal,
differentiation and expression of the CSC surface marker,
CD133 (47, 48). Xenograft transplantation of these cells in
NOD/SCID mice demonstrated increased tumorigenicity, in
addition to increased ALDH1 protein expression which
correlated with poor clinical outcome and advanced stage of
disease in NSCLC. 

ATP-binding cassette sub-family G member 2 (ABCG2).
ABCG2 (BRCP, ABCP, MXR) is the member of ATP
binding cassette (ABC) superfamily that consists of
transmembrane proteins. ABCG2 is 655 amino acids with

approximately 72kDa protein product of a gene in
chromosome 4 (4q22). ABCG2 is a half-transporter
predominantly localized at plasma membranes, while
dimerization is required for active function (49). The side
population phenotype (SP) is one well-known
characterization method of CSC. This method measures the
ability of stem cells to efflux the fluorescent dye Hoechst
33342 from the cells. ABCG2 has been proved to be a
molecular determinant responsible for SP phenotype (50).
ABCG2 expression is a conserved feature of stem cells from
a wide variety of tissues, including pancreas, lung, limbal
epithelium, heart, testis, muscle, cornea and conjunctiva,
brain, prostate, and embryo (51). Moreover, ABCG2 was
high frequently identified in various types of cancer
including carcinomas of the digestive tract, lung, breast,
ovarian, and melanoma (49). The expression level of ABCG2
is also associated with high pathological grade of tumor and
poor prognosis outcome of patients (52, 53).   

Transcription factors regulating cancer stem cells. CSCs
characteristics are thought to be regulated by the numerous
set of molecular signals that are tightly controlled by stem
cell transcription factors which enrolled the activity to
maintain normal stem cell functions. There are several well-
characterized stem cell transcription factors that are used for
CSC identification, and among them Octamer-binding
transcription factor 4 (Oct-4), Sex determining region Y-box
2 (Sox2), and Nanog are intensively used for lung CSC
identification. 

Octamer-binding transcription factor4 (Oct-4). Oct-4 is a
POU domain-containing transcription factor that binds to the
octamer sequence, ATGCAAAT, of the target genes. Oct-4 is
encoded by POU5F1 gene located at chromosome 6p21.31.
The human Oct-4 gene consists of five exons which can be
spliced into three main isoforms OCT4A, OCT4B and
OCT4B1. These gene isoforms provide four isoform proteins
Oct4A, Oct4B-190, Oct4B-265, and Oct4B-164. All forms of
Oct-4 are functionally and structurally divided into three
domains including an N-terminal transcriptional activation
domain, a central POU domain, and a C-terminus containing
a cell type-specific transactivation domain. Oct4A, is generally
referred as Oct-4, and regulates the stemness of embryonic
stem cells. Oct-4 is highly expressed in embryonic stem (ES)
cells and low expressed when ES cell differentiates and there
is consequently loss of pluripotency. Oct-4 and its activities
were shown to be required for maintaining the ES cell
capacity (54). Several target genes of Oct-4 in ES cells have
been identified, including Fgf4, Utf1, Opn, Rex1/Zfp42, and
Fbx15 (55). Additionally, high levels of Oct-4 have been
identified in highly aggressive tumors, poor prognosis patients,
and relapse cancer. It has been documented that
overexpression of Oct-4 is associated with tumorigenicity,
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metastasis, and cancer relapse in certain cancers (56). High
expression of Oct-4 was detected in prostate and breast cancer
stem cells and in the tumor initiating cells in a p53–/– tumor
mice model (57). Oct-4 level and activity are known to be
regulated by several steps, such as transcription, translation,
and post-translational modifications. The key regulatory
control of Oct-4 is found to be the post-translational
modifications via phosphorylation. Oct-4 can be
phosphorylated by various types of protein kinases at Ser229,
Ser236 and tyr327. Phosphorylation at these residues regulates
Oct-4 stability and transcriptional activity (58, 59).
Ubiquitination is the main pathway responsible for eliminating
short-lived proteins. Oct-4 can be ubiquitinated by an HECT-
type E3 ubiquitin ligase, Wwp2. Wwp2 regulates Oct-4 level
by mediating its ubiquitination and degradation during ESC
differentiation. Both the Wwp2 and Oct4 levels decrease when
ESCs are induced to differentiate (60). The small ubiquitin-
related modifier (SUMO), which is functionally divergent
from ubiquitin, can modify many nuclear proteins to affect
their subcellular localization, thus altering their interaction
with cooperative molecules. Studies show that Oct-4 can be
sumoylated at a single lysine, lysine 118, which is located at
the end of the N-terminal transactivation domain and next to
the POU DNA-binding domain. Sumoylation of Oct-4
significantly increases its stability, DNA binding, and thus the
transcriptional activity (59). 

Sex determining region Y-box 2 (Sox2). SRY (sex determining
region Y)-box2, Sox2, is a member of the Sox transcription
factor of HMG-family that occupies many gene targets
including self-renewal maintaining genes (61). Sox2 shares
an approximately 80 amino acids region with its family
known as high-mobility group (HMG) box domains which
are DNA binding domains (62). Sox2 and Oct-4 cooperative
to activate gene transcription by binding at non-palindromic
sequences. In normal tissue, Sox2 regulates the
morphogenesis of various tissue types including control
branching morphogenesis of the bronchial tree and maturation
of the epithelium of airways, development of gastric and
intestinal basal cells, and growth and differentiation of
neuronal cells. The amplification of DNA at 3q26.3 region
which encodes the Sox2 gene is frequently observed in
NCLCs squamous cell carcinoma. Sox2 expression is also
observed in high grade prostate cancer, colorectal cancer and
breast cancer (63). Additionally, overexpression of Sox2 is
associated with chemo-resistance, cancer migration and
anchorage-independent growth (63). The regulation of Sox2
level and transcriptional activity are found to be mainly by
post-translational modifications. Sox2 can decrease its DNA
binding capacity by sumoylation at lysine 247 which is
triggered by phosphorylation at triplet serine (ser249, 250,
and 251). Therefore, phosphorylation at Thr118 promotes
Sox2 stability by blocking its ubiquitination. In addition,

Sox2 is directly methylated at Arg113 by protein arginine
methyltransferase 4 (PRMT4, known as CARM1). This
methylation promotes Sox2 self-association via HMG-box
domain. The acetylation by p300/cAMP-response element-
binding protein (CBP) at Lys75 of Sox2 promotes its
proteasomal degradation (59). 

Nanog. Nanog is a 350 amino acid protein with a homeobox-
containing motif which facilitates binding with DNA. Nanog
is encoded by the NANOG1 gene, located on chromosome
12 (12p13.31), which is activated to maintain the pluripotent
state of the cell. Based on the differences in gene expression
between wild-type and Nanog null cells, it has been
proposed that Nanog regulates pluripotency mainly as a
transcription repressor for downstream genes that are
important for cell differentiation such as Gata4 and Gata6
(64). However, Nanog can also activate the genes necessary
for self-renewal such as Rex1. Nanog is highly expressed in
pluripotent cells and its expression is down-regulated during
differentiation. High expression of Nanog has been
documented in many types of carcinomas such as tumor of
brain, colon, breast, gastric, liver, kidney, and lung.
Importantly, the expression of Nanog in certain tumors have
provided positive correlation with treatment failure and poor
prognosis of patients. Moreover, up-regulation of Nanog
expression promotes tumorigenicity. These demonstrated that
Nanog is associated with tumor progression, resistance to
chemo/radiotherapy, and disease relapse (65). Nanog can be
phosphorylated at four Ser/Thr-Pro motifs. These
phosphorylation sites suppress the ubiquitination of Nanog
and enhance its stability by promoting the interaction
between Nanog and the prolyl isomerase Pin1 (66).

CSC and Lung Cancer Metastasis

Metastasis is a process comprising several steps where
cancer cells disseminate form their original tumor to generate
new tumors at distant parts (67). Like in other types of
malignant human cancers, metastasis in lung cancer is
considered as a key determining factor of prognosis of
patients (68). Lung cancers are frequently diagnosed in
metastatic stages (stage IV or more advance stages) at the
time of first diagnosis (69). To successfully metastasize, the
cancer cells encompass many biological processes including
increased motility, induction of epithelial-mesenchymal
transition (EMT), intravasation, survival in the blood or
lymphatic circulations, extravasation, mesenchymal-
epithelial transition (MET), and ability to form new tumor
(tumorigenesis) (70). A rare population (less than 1%) of
cancer cells could succeed in metastasizing. Several natural
compounds have been tested for their possible role in
preventing cancer cell dissemination as explained in our
previous work (71). 
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The process of cancer cell transition from epithelium-like
cells to mesenchymal-like cells has been shown to be
implicated in several behaviors of normal as well as cancerous
cells (72). Epithelial to mesenchymal transition (EMT) is an
essential process of the cancer cell to metastasize as it provides
many important capabilities including ability to survive in
detached conditions (anoikis resistance), increased invasion,
and enhanced cell motility (73). It has been identified that the
EMT in cancer cells involves several pleiotropic transcriptional
factors, such as Snail (74), Slug (75), Zeb1 (76), Bmi-1 (77),
and deltaEF1 (78). Such transcription factors enable EMT cells
to disrupt epithelial adhesion, and cell to cell interaction (79).
The EMT cells will then detach, leave the primary tumor mass,
migrate, and invade into the circulation (80). It is known that
EMT in cancer cells is relatively transient. Importantly, at the
final step of cell dissemination when the cancer cells have
reached the site of new establishment, the conversion of EMT
named mesenchymal to epithelial transition (MET) is required
to ensure stable cell interaction and adhesion to the surrounding
new microenvironment (81). Therefore, the dynamic drive of
EMT-MET processes is considered as a critical capability of
cancer cells to metastasize (82). 

After cancer cells have reached the site of metastasis, the
tumorigenic potential, the unique property found in CSCs, of
the cells is required for the establishment of new tumor (83, 84).
These contexts have suggested the involvement of EMT and
CSC in the process of metastasis. Even though the clear picture
of how EMT relates to CSC is not yet verified, recent evidence

has linked EMT to CSCs (85). EMT related transcription factors
or inducers such as Epidermal Growth Factor (EGF),
Transforming Growth Factor β (TGF-β), Hepatocyte Growth
Factor (HGF), Wnt/β-catenin, Hedgehog, Notch pathways, are
essential for CSCs (86, 87). Certain studies have pointed out
that induction of EMT mediated by EMT inducers in fully
differentiated epithelial cells can trigger CSC-like phenotypes
including increased CD44, decreased CD24, and increased stem
cell phenotypic markers (85, 88, 89). Furthermore, the decrease
in E-cadherin and increase in MMP-2, an indicator of EMT,
were found to be critical for CSCs to metastasize (90). 

In conclusion, evidence has pointed out that the key
players of metastasis are the cell possessing ability of CSC
to generate new tumor, increased motility, and EMT-MET
transition. It has been assumed that metastasis-initiating cells
are overlapping with CSCs to some degree. In addition,
genetic evaluation of CSCs revealed their relevance in tumor
recurrence and metastases, supporting the conclusion that
CSCs may be metastatic precursors. The involvement of
CSC in lung cancer metastasis, EMT-MET, and cancer
relapse is presented in Figure 1.

Natural Product Targeting Lung Cancer Stem Cells

Natural products have been a rich source of novel lead
compounds which may be useful for anti-cancer approaches.
Here we summarized the discovered natural product-derived
compounds (Table II) that have been demonstrated to influence
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Figure 1. Schematic figure of cancer stem cell in implication to metastasis, chemotherapeutic resistance, epithelial to mesenchymal transition, and
cancer relapse.
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key CSC signaling pathways such as WNT/β-catenin,
Hedgehog, Notch and PI3K/AKT/mTOR pathways (91-93). 

Curcumin, a yellow polyphenol, is a key compound
derived from the rhizome of Turmeric (Curcuma longa)
belonging to the ginger family (Zingiberaceae) (94).
Previous studies have revealed the promising activities of
curcumin against various kinds of cancer. Curcumin is able
to suppress cancer signaling pathways, inhibit metastasis and
angiogenesis, induce apoptosis, and sensitize tumor cells to
cancer therapies (95-98). Several studies have suggested that
curcumin can target CSCs in a variety of human cancer types
(99-102) including lung cancer (103). Curcumin can
diminish the self-renewal capacity of lung CSCs by inducing
DNA damage or suppressing DNA repair mechanisms.
Sheefa et al., studied the effect of curcumin on circulating
CSCs isolated by sphere formation assay and observed a
significant inhibition of sphere formation (104). Moreover,
the result from single cell gel electrophoresis assay showed
that 95.47±0.72% of DNA material was present in comet tail
(104). Wu et al., reported that curcumin disturbed
JAK2/STAT3 signaling pathway resulting in the reduction of
tumor sphere growth of H460 lung cancer cells in vitro and
in vivo (105). Curcumin has also been reported to reduce
CSC marker (CD133, CD44, ALDHA1, Nanog and Oct4)
expression, inhibit proliferation and induce apoptosis via
down-regulation of WNT/β-catenin and Sonic Hedgehog
pathways in A549 and H1299 cells (106). Furthermore,
curcumin is an attractive candidate for combination therapy
because curcumin can target CSCs which are responsible for
cancer recurrence and therapy resistance. Baharuddin et al.,
combined curcumin with low dose cisplatin (3 μM) and
found that curcumin increased the sensitivity of the highly
migratory CD166+/EpCAM+ CSC subpopulation in the
A549 and H2170 cells to cisplatin-induced apoptosis and
inhibited migration (107).

Many studies have revealed that natural products isolated
from Dendrobium species possess anticancer properties
including anti-proliferation, anti-migration, anti-metastasis,
and apoptotic induction in lung cancer (108-110). Gigantol,
a bibenzyl phenolic compound derived from several
medicinal orchids, has been shown to inhibit proliferation,
migration, EMT and CSC phenotype in lung cancer cells
(111-114). At non-toxic doses (below 20 μM), gigantol
isolated from Dendrobium draconis could suppress tumor
spheroid formation and decrease lung CSC marker proteins,
including CD133 and ALDH1A1, in non-small-cell lung
cancer NCI-H460 cells (112). Additionally, gigantol inhibited
cancer stem cell-like phenotypes through down-regulation of
AKT signaling pathway which lead to reduced levels of Oct4
and Nanog (114). Chrysotoxine, a bibenzyl compound
isolated from stems of Dendrobium pulchellum, has been
reported to sensitize anoikis and inhibit metastasis of lung
cancer cells in an anchorage-independent fashion (115).

Bhummaphan et al. investigated the suppressive effects of
chrysotoxine on CSC-rich populations of H460 and H23 cells
and primary CSCs in three-dimensional (3D) culture and
showed that non-toxic doses (≤20 μM) of chrysotoxine
inhibited CSC-like phenotypes and decreased CSC markers
CD133, CD44, ABCG2 and ALDH1A1 which were mediated
through a Src-AKT-Sox2-dependent mechanism (116).

Vanillin, a 4-hydroxy-3-methoxybenzaldehyde isolated
from the seed of Vanilla planifolia, is widely used as a
flavoring agent in food and cosmetics (117). Vanillin
inhibited cell migration, lamellipodia formation and
angiogenesis and induced apoptosis in many cancer types
including lung cancer (117-120). Non-toxic doses (below
100 μM) of vanillin could inhibit spheroid and colony
formation, major hallmarks of the cancer stemness, and
reduce the CSC markers CD133 and ALDH1A1 and the
related transcription factors, Oct4 and Nanog in H460 cells
through the reduction of AKT and downstream CSC
transcription factors (121).

Silibinin is a natural polyphenolic flavonoid derived from
milk thistle seed (Silybum marianum) which has the ability
to diminish many cancer types including lung cancer (122).
To determine the suppressive effect of silibinin on lung
cancer stem cells, Corominas-Faja et al. developed erlotinib-
refractory cells (PC-9/Erl-R cells) by growing NSCLC PC-
9 cells expressing the EGFR exon 19 deletion in routine
culture medium containing a high dose of erlotinib (1 μM)
(123). The results from flow cytometry and the
ALDEFLUOR® reagent showed that silibinin reduced
aldehyde dehydrogenase (ALDH)-expressing CSC-like cells
in erlotinib-refractory cell populations and inhibited lung
cancer spheres formation in a dose-dependent manner. 

Isoflavone VF166, a derivative of soy isoflavone daidzein,
can inhibit growth of various cancers including lung cancer.
VF166 could suppress cell adhesion, migration and invasion
of NSCLC in vitro. Moreover, the results from real time RT-
PCR revealed that treatment with VF166 up- and down-
regulated various genes including DKK1, KLF4, MUC1,
ErbB2, PTCH1 and SMO in NSCLC cells involved in the
regulation of invasion associated signaling pathways such as
WNT/β-catenin, Hedgehog, STAT3, and SPARC (124).

Parthenolide, a natural sesquiterpene lactone isolated from
the shoots of feverfew (Tanacetum parthenium), has
anticancer effects on cancer cells and cancer stem cells from
various types of cancer including lung cancer (125-128).
Parthenolide has been shown to selectively kill cancer stem-
like cells via ER stress and apoptosis signaling pathway in
A549/shCDH1 cells in which CDH1/E-cadherin was
knocked down with shRNA. Its underlying mechanisms are
up-regulation of activating transcription factor 4 (ATF4) and
DNA damage-inducible transcript 3 (DDIT3) expression
which lead to up-regulation of Poly (ADP-ribose)
polymerase-1 (PMAIP1) expression (129).
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Renieramycin M (RM) isolated from the blue sponge
Xestospongia sp. has been reported to have anti-invasion,
anti-migration, and apoptosis-inducing activities in lung
cancer cells (130). RM treatment at non-toxic concentrations
reduced significantly colony and spheroid formation of H460
cells. Furthermore, RM can also down-regulate the CSC
markers CD133, CD44 and ALDH1A1 of CSC-enriched
H460 cells (131).

Salinomycin is polyether ionophore antibiotic derived from
Streptomyces albus (132). Salinomycin showed time- and dose-
dependent cytotoxic activity evaluated by sulforhodamine B
and colony formation assay in LNM35 and A549 lung cancer
cells (133). Treatment with salinomycin for 24 h has been
shown to significantly inhibit the tumor sphere formation using
flow cytometry and reduce stem cell markers OCT-4, NANOG
and SOX2 expression by real-time RT-PCR analysis in ALDH
A549 lung cells (134). Zhang et al. developed salinomycin-
nanoparticles (salinomycin-NPs) and gefitinib-nanoparticles
(gefitinib-NPs) by the emulsion/solvent evaporation approach
to kill both lung CSCs and lung cancer A549 and A431 cells
(135). Both salinomycin and salinomycin-NPs could
selectively target CD133 positive CSCs and reduce tumor
sphere formation in lung cells, while gefitinib and gefitinib-
NPs preferably target lung cancer cells. Consistent with their
in vitro results, salinomycin or salinomycin-NPs decreased
CSC population in the tumors from nude mice bearing A431
xenografts. Furthermore, combination of Salinomycin-NPs and
gefitinib-NPs has a more efficient suppressive effect on tumor
growth than the combination of salinomycin and gefitinib or
single salinomycin-NPs or gefitinib-NPs.
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